Senin, 09 Mei 2016

Tugas Fisika Biot-Savart

Suatu kumparan dipasang  vertikal dengan tali tegang, ukuran kumparan ialah
l1= 10 cm= 0.1 m
l2=20 cm= 0.2 m
Medan magnet B sebesar 0.05 T mempunyai arah sumbu x positif. Kumpuran terdiri dari 200 lilitan arus yang mengalir dalam kumparan adalah i= 1 A
Hitunglah:
(a) momen dipol magnet kumparan
m=N i A
m= 200x1x(0.1×0.2)= 4 A m²
(b) Momen gaya pada loop berarus bila loop sejajar dengan B
τ= m x B
τ=4 x 0.05= 0,2 Nm
(c) Momen gaya bila bidang loop membuat sudut 60° terhadap arah B
τ=m x B X sin 30°
τ=4 x 0.05 x 0.5= 0.1 Nm

Sebuah magnet batang sepanjang 20 cm berada dalam medan magnet 0,5 T. magnet batang tersebut dipasang tegak lurus arah medan magnet, dapat berputar pada sumbu s tegak lurus bidang gambar
fisika
untuk mempertahankan magnet pada posisi ini, pada kutub U harus diberi gaya Fo= 0,5 N
hitunglah momen dipol magnet batang ini
Jawab
Bila momen magnetik batang adalah m, momen gaya yang disebabkan oleh medan magnet ialah
τ= m x B x sin Θ dimana Θ= 90°
momen gaya τ ini harus sama dengan momen oleh Fo yaitu τo jadi
τo=(fo)(l/2)= (0.5 N) x (0.1 m)= 0.05 Nm
τ=m x B
0.05/0.5=m
m= 0.1 Am

Latihan Fisika II – Vektor II

  1. Tentukan sudut yang dibentuk oleh vektor A = i + 2j – k dan vektor B = 3i – 4k!
  2. Tentukan panjang proyeksi dari vektor A = 4i + 2j – k terhadap arah vektor Bi + 3j – 4k!
  3. Diberikan tiga buah vektor
    1. A = 1i + 2j – k
    2. B = 4i + 2j + 3k
    3. C = 2j – 3k

    Tentukan
    1. A · (B × C)
    2. A · (B + C)
    3. A × (B + C)
  4. Buktikan vektor R = 3i + 2j – 4k dan S = 2i + j + 2k adalah tegak lurus!

 

JAWABAN

No. 1

Diketahui:
A = i + 2j – k
B = 3i – 4k
Ditanya:
Sudut antara kedua vektor tersebut adalah?
Dijawab:
 
A = √( (1)2 + (2)2 + (-1)2 )
= √(1 + 4 + 1)
= √(6)
= √6 satuan

B = √( (3)2 + (0)2 + (-4)2 )
= √(9 + 0 + 16)
= √(25)
= 5 satuan

A · B = ( 1i·3i + 1i·-4k ) +
( 2j·3i + 2j·-4k ) +
( -1k·3i + -1k·-4k )
= (1·3) · (i·i) + (1·-4) · (i·k) +
(2·3) · (j·i) + (2·-4) · (j·k) +
(-1·3) · (k·i) + (-1·-4) · (k·k)
= (3)·(1) + (-4)·(0) +
(6)·(0) + (-8)·(0) +
(-3)·(0) + (-1·-4)·(1)
= 3 + 0 + 0 + 0 + 0 + 4
= 7 satuan

A · B = A · B · cos(θ)°

cos(θ)° = ( A · B ) / ( A · B )
= ( 7 ) / ( √6 · 5 )
= 7√6 / 30

θ° = cos-1(7√6 / 30)
= 55,141°


No. 2

Diketahui:
A = 4i + 2j – k
B = i + 3j – 4k
Ditanya:
Panjang proyeksi vektor A terhadap arah vektor B?
Dijawab:
 
B = √( (1)2 + (3)2 + (-4)2 )
= √(1 + 9 + 16)
= √(26)
= √26 satuan

A · B = ( 4i·1i + 4i·3j + 4i·-4k) +
( 2j·1i + 2j·3j + 2j·-4k) +
( -1k·1i + -1k·3j + -1k·-4k)
= (4·1) · (i·i) + (4·3) · (i·j) + (4·-4) · (i·k) +
(2·1) · (j·i) + (2·3) · (j·j) + (2·-4) · (j·k) +
(-1·1) · (k·i) + (-1·3) · (k·j) + (-1·-4) · (k·k)
= (4)·(1) + (12)·(0) + (-16)·(0) +
(2)·(0) + (6)·(1) + (-8)·(0) +
(-1)·(0) + (-3)·(0) + (4)·(1)
= 4 + 0 + 0 + 0 + 6 + 0 + 0 + 0 + 4
= 14 satuan

C = (A · B) / (B)
= (14) / (√26)
= 14√26 / 26
= 7√26 / 13


No. 3

A = 1i + 2j – k
B = 4i + 2j + 3k
C = 2j – 3k
Ditanya:
a. A · (B × C)?
b. A · (B + C)?
c. A × (B + C)?
Dijawab:
 
a. B × C = ( 4i×2j + 4i×-3k ) +
( 2j×2j + 2j×-3k ) +
( 3k×2j + 3k×-3k )
= (4×2) × (i×j) + (4×-3) × (i×k) +
(2×2) × (j×j) + (2×-3) × (j×k) +
(3×2) × (k×j) + (3×-3) × (k×k)
= (8)×(k) + (-12)×(-j) +
(4)×(0) + (-6)×(i) +
(6)×(-i) + (-9)×(0)
= 8k + 12j + 0 – 6i – 6i + 0
= -6i – 6i + 12j + 8k
= (-6-6)i + (12)j + (8)k
= -12i + 12j + 8k

A · (B × C) = ( 1i·-12i + 1i·16j + 1i·8k) +
( 2j·-12i + 2j·12j + 2j·8k) +
( -1k·-12i + -1k·12j + -1k·8k)
= (1·-12) · (i·i) + (1·12) · (i·j) + (1·8) · (i·k) +
(2·-12) · (j·i) + (2·12) · (j·j) + (2·8) · (j·k) +
(-1·-12) · (k·i) + (-1·12) · (k·j) + (-1·8) · (k·k)
= (-12)·(1) + (12)·(0) + (8)·(0) +
(-24)·(0) + (24)·(1) + (16)·(0) +
(12)·(0) + (-12)·(0) + (-8)·(1)
= -12 + 0 + 0 + 0 + 24 + 0 + 0 + 0 – 8
= 4 satuan

b. B + C = (4i + 2j + 3k) + (2j – 3k)
= (4i) + (2j + 2j) + (3k + -3k)
= (4)i + (2+2)j + (3-3)k
= 4i + 4j + 0k
= 4i + 4j

A · (B + C) = ( 1i·4i + 1i·4j ) +
( 2j·4i + 2j·4j ) +
( -1k·4i + -1k·4j )
= (1·4) · (i·i) + (1·4) · (i·j) +
(2·4) · (j·i) + (2·4) · (j·j) +
(-1·4) · (k·i) + (-1·4) · (k·j)
= (4)·(1) + (4)·(0) +
(8)·(0) + (8)·(1) +
(-4)·(0) + (-4)·(0)
= 4 + 0 + 0 + 8 + 0 + 0
= 12 satuan

c. B + C = (4i + 2j + 3k) + (2j – 3k)
= (4i) + (2j + 2j) + (3k + -3k)
= (4)i + (2+2)j + (3-3)k
= 4i + 4j + 0k
= 4i + 4j

A × (B + C) = ( 1i×4i + 1i×4j ) +
( 2j×4i + 2j×4j ) +
( -1k×4i + -1k×4j ) +
= (1×4) × (i×i) + (1×4) × (i×j) +
(2×4) × (j×i) + (2×4) × (j×j) +
(-1×4) × (k×i) + (-1×4) × (k×j)
= (4)×(0) + (4)×(k) +
(8)×(-k) + (8)×(0) +
(-4)×(j) + (-4)×(-i)
= 0 + 4k – 8k + 0 – 4j + 4i
= 4i – 4j + 4k – 8k
= (4)i – (4)j + (4-8)k
= 4i – 4j – 4k


No. 4

Diketahui:
R = 3i + 2j – 4k
S = 2i + j + 2k
Ditanya:
Apakah kedua vektor tersebut saling tegak lurus?
Dijawab:
 
P = √( (3)2 + (2)2 + (-4)2 )
= √(9 + 4 + 16)
= √(29)
= √29 satuan

Q = √( (2)2 + (1)2 + (2)2 )
= √(4 + 1 + 4)
= √(9)
= 3 satuan

R · Q = ( 3i·2i + 3i·1j + 3i·2k) +
( 2j·2i + 2j·1j + 2j·2k) +
( -4k·2i + -4k·1j + -4k·2k)
= (3·2) · (i·i) + (3·1) · (i·j) + (3·2) · (i·k) +
(2·2) · (j·i) + (2·1) · (j·j) + (2·2) · (j·k) +
(-4·2) · (k·i) + (-4·1) · (k·j) + (-4·2) · (k·k)
= (6)·(1) + (3)·(0) + (6)·(0) +
(4)·(0) + (2)·(1) + (4)·(0) +
(-8)·(0) + (-4)·(0) + (-8)·(1)
= 6 + 0 + 0 + 0 + 2 + 0 + 0 + 0 – 8
= 0 satuan

P · Q = P · Q · cos(θ)°

cos(θ)° = ( P · Q ) / ( P · Q )
= ( 0 ) / ( √29 · 3 )
= 0

θ° = cos-1(0)
= 90°

Jadi, karena sudut antara kedua vektor tersebut adalah 90°, maka kedua vektor tersebut saling tegak lurus.